

RIPE Internet Measurements

Presentation of RIPE's tools, methodologies and datasets

To Inform and Inspire

RIPE and the RIPE NCC

RIPE Community

- Started in 1989 by researchers in Europe
- Technical coordination of IP network
- Volunteers, no legal structure
- Open to everybody
 - Meetings
 - Working Groups
 - Mailing lists
- Collaboration and coordination

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

4

RIPE Working Groups

- Anyone can join the discussion
 - On mailing lists
 - At RIPE meetings (in-person and online)
 - Remote participation
- Read and/or subscribe
 - ripe.net/participate/ripe/wg
- Learning opportunities
- Please contribute!

The RIPE NCC

- Independent, not-for-profit, membership organisation
 - Funded by membership fees
- Distributing Internet resources as a Regional Internet Registry (RIR)
 - Policies decided by regional community
 - Through a neutral, impartial, open and transparent process
- Supporting the Internet through technical coordination

RIPE Database

7

- <u>The RIPE Database</u> contains registration information for networks in the RIPE NCC service region and related contact details.
- Some uses of the RIPE Database and its contents:
 - Providing accurate registration information of Internet number resources
 - Publishing routing policies by network operators
 - Facilitating coordination between network operators
- Uses the "whois" protocol, data is open

Regional Internet Registries (RIRs)

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

8

Get Involved

9

- RIPE meetings attendance support:
 - RACI programme, RIPE Fellowship, Diversity Task Force
- Other events organised by the RIPE NCC
 - Regional meetings, training courses, hackathons
- RIPE NCC's Community support
 - NOG support, Community Projects Fund

RIPE Labs

But What About Data?

We Collect a lot of Interesting Data!

- For the community, by the community
- For network operators
- Data collections:
 - RIPE Atlas : latencies and paths (how do packets experience the network)
 - RIPE RIS : control plane (BGP)
 - "where should packets be routed"

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

11

Why Do We Collect Data?

12

- It's in our mission: "As a neutral source of information and knowledge, we actively contribute to a stable and innovative Internet."
- To measure is to improve

RIPE Atlas

Seeing your Network from the Outside (

14

- RIPE Atlas is a global, open, distributed Internet measurement platform, operated by the RIPE NCC
 - Consisting of thousands of devices (probes, anchors, VM, software probes)
 - Actively measuring Internet connectivity in real time
 - Open data available to the operators and research community
 - Ping, traceroute, DNS, TLS, NTP
 - Supports IPv4 and IPv6
 - February 2020: we launched software probes

15

RIPE Atlas Data Interfaces

- Data files, APIs, CLI
- Widgets, tools, code
- atlas.ripe.net/docs

APIs Manuals and References

- APIs Manual 🕑
- API keys Manual
- API Resources Reference
- Streaming API Reference
- Built-in Measurements Reference
- RIPE Atlas Daily Data Dumps

Contact RIPE Atlas

16

- Website
 - <u>atlas.ripe.net</u>
- Articles and updates
 - labs.ripe.net/atlas
- Mailing list for active users
 - ripe-atlas@ripe.net
- Questions
 - <u>atlas@ripe.net</u>
- Twitter
 - @RIPE_NCC and #RIPEAtlas

RIPE RIS

RIPE Routing Information Service

- RIS collects BGP routing data
 - Since 1999
 - From multiple viewpoints
- <u>ris.ripe.net</u>
- ris-users@ripe.net

BGP: Internet Traffic Control

19

- BGP makes Interdomain routing work
- Border routers: routers that receive explicit routing information for all of the Internet
- How do we monitor this traffic control?
- Listen in on this chatter at interesting places in the Internet

RIPE RIS Data Interfaces

- Data Files
- <u>Streaming</u>
- Widgets / APIs in RIPEstat

RIPEstat: Multi-perspective on IPs

- RIPEstat is a web-based interface that provides everything you ever wanted to know about IPs, AS
 Numbers and related information for hostnames and countries in one place.
- stat.ripe.net

Web-based interface

Using the web-based interface, you can see query results displayed in widgets (organised in tabs), compare results for different resources across different widgets, access the mobile site, and take advantage of personalised features for logged-in users.

Individual widgets

Widgets are interactive graphical and visual representations of data that can be embedded on other websites.

Data API

The RIPEstat Data API (Application Programming Interface) can be used to directly access RIPEstat data via your own scripts and programs.

Text service

The RIPEstat Text Service offers the CLI (Command Line Interface) access to RIPEstat data, either via standard CLI tools or our own program, available as open source code.

Mobile app (iOS)

3rd Party Tools

22

• CAIDA IODA

- ioda.caida.org

Internet Health Report

- ihr.iijlab.net/ihr
- Artemis
 - <u>bgpartemis.org</u>

BGP Alerter

- github.com/nttgin/BGPalerter

Measuring Websites

with **RIPE** Atlas

The Most Wanted Feature...

24

- By design, RIPE Atlas does not measure "application layer"
 - Operators are happy with transport/network layer
 - Ping, traceroute, DNS, TLS/SSL, NTP
- Users have been asking for HTTP measurements
- Due to <u>ethical reasons</u>, we decided:
 - to not target arbitrary websites with probes
 - that "standard" HTTP measurements are ONLY possible towards RIPE Atlas anchors

email WWW phone
SMTP HTTP RTP
TCP UDP
IP
ethernet PPP
CSMA async sonet
copper fiber radio

Ethical Reason: Protecting Hosts

Ethics in Tech

- Ethics in Network Measurements (RIPE Labs)
- Ethics in Technology (RIoT Summit, SHA2017)

Workaround: Using a TCP Ping

27

- Traceroute (TCP) to the targeted web server
 - Towards IP address: port 80
 - 3 packets; a packet size of zero
 - "maximum hops" = 64, initial time-to-live (TTL) = 64
 - Long enough for the first traceroute attempt to immediately reach the destination address
- Mimics the behaviour of the TCP handshake
 - That takes place when setting up an HTTP connection
- This measures the same network delays!
 - RTT turns out to be equivalent to HTTP connect times

How to: Web UI

- Go to Measurements
- Click on New msm
- Advanced options
- Add up to 1000 probes
- Choose one off
 - Or continuous / repeated
- Done!
 - You need to have credits

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

Create a New Measurement

Definitions

Target*:		s39839.anchors.atlas.ripe.net Secret Secretaria				
dk-blp-as39839.anchor	er etter eine met		h bla 200220			
	address or hostname	Traceroute measurement to dk-blp-as39839.				
Antip	address or nostname	Protocol*:				
Address Family*:	(ТСР				
IPv4	-					
Timeout (ms):		Interval:				
		600	9			
4000	٢	How often this should be done (seconds				
		between samples). Note t				
		ignored for one-off	measurements			
		Resolve on Probe:	0			
		Force the probe to do	DNS resolution			
3	0	80	٢			
Packets:		Port:				
Size:		Paris:				
0	٢	16	٢			
	Size of the packet	Number of different var				
First Hop:		traceroute. Set 0 for stand	lard traceroute			
64	6	Destination Extension Header Size:				
Start measuring the	traceroute at this hop.	0	٢			
		The size of the destin	ation extension			
Maximum Hops:		header to include in	the IPv6 packet			
64	٢	Hop-by-Hop Extension He	ader Size:			
Stop measuring the	traceroute at this hop.	0				
Spread:			. haa aataa da			
		The size of the hop-by header to include in t				
		neader to include in	me invo packet			
	ly distributed random probe start time phase	Don't Fragment:	0			
,		Skip DNS check:	-			
		and all a second and a second				
		Disables target DNS check or				

28

Credit System

29

- Running your own measurements cost credits
 - Ping = 10 credits, traceroute = 20, etc.
- Why? Fairness and to avoid overload
- Limits: daily spending and # of measurement results
- How to get credits?
 - Generated by hosting a probe / anchor
 - Transferred from another user
 - Reclaiming a gift voucher

How to: Command Line (CLI)

30

ripe-atlas measure traceroute --target 82.94.235.165 --protocol TCP --size 1 --first-hop 64 --max-hops 64 --port 80

- "—size" should actually be 0 (will be fixed soon)
 - Please help us by fixing it yourself, make a pull request!
- CLI tools:
 - Source: <u>github.com/RIPE-NCC/ripe-atlas-tools/</u>
 - Documentation: ripe-atlas-tools.readthedocs.org
 - Included in many Linux/BSD distributions

Results

- Reachability Map
- Colour-coded for latency
- List of probes and latencies
- Download as <u>JSON</u>

4 ⁴ 3rd TCP Ping measurement to 82.94.235.165 (unciv.nl)										
General In	nformation	Probes	Мар	TraceMo	ON (beta)	OpenIPMap Pro	ototype	Resu	ılts	Mod
Probe	+ ASN (IPv4	1) ¢	ASN (IPv6)	\$	÷	Time (UTC)	\$ F	RTT	•	+ Hop
10150	6830		6830		= 🏻	2017-10-03 11:51	2	23.829		1
10782	3265		3265		= 🏊	2017-10-03 11:51	1	8.605		1
24605	3265		3265		= 🏻	2017-10-03 11:51	1	8.090		1
13538	6830					2017-10-03 11:51	1	7.560		1
31178	6830				-	2017-10-03 11:51	1	6.069		1
16274	28685				= 🏊	2017-10-03 11:51	1	4.752		1

Detailed Technical Information

32

- For 68% of the probe/destination pairs, median values differ by less than 1ms
- Interdecile ranges differ by less than 6ms
- When compared to RTT of 100 milliseconds, a difference in spread of 5-15ms may still be acceptable to assess network performance
- <u>https://labs.ripe.net/Members/wilhelm/measuring-your-web-server-reachability-</u> <u>with-tcp-ping</u>

Internet Health

Routing and COVID-19

34

- Number of ASes with any type of origin change in BGP
 - No visible decrease in the number of changes

Routing and COVID-19

- Normal change pattern
- Periodic dips on Saturday and Sundays
- Stable BGP activity
- Operators take their responsibility and maintain their networks
- More on <u>RIPE Labs</u>

RIPE Atlas and COVID-19

- Internet Health Report during COVID-19
 - Network Delays in Times of Corona (RIPE Labs)
 - <u>Network Delays During National Lockdowns</u> (IHR)
- Internet is keeping up!
- Delays in some locations

Internet in Crimea (Study)

- Sociological fieldwork and Internet measurement
- Read the <u>full study</u>

37

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

Country Reports

- <u>SEE Region Country Report</u>, April 2020
- Germany Country Report, November 201
- Dutch Routing, August 2019

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

Outages Visualisations

Outages at the Core: AMS-IX, Level 3 6

 <u>Does the Internet Route Around Damage? A Case Study Using</u> <u>RIPE Atlas</u>

Connectivity between reliable source-destination pairs as seen in RIPE Atlas traceroutes (IPv4)

Croatian Earthquake, March 2020

41

• After the Quake in Croatia

Earthquake in Nepal, April 2016

Using RIPE Atlas and RIPEstat to detect network outage events

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

Country Events: .TR, .KP, .IR

- The Internet in North Korea Hanging by a Single Thread?
- Iran and K-root: The Rest of the Story
- A RIPE Atlas View of Internet Meddling in Turkey

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

Power Outage in Amsterdam

- <u>Amsterdam Power Outage as Seen by</u> <u>RIPE Atlas</u>
- <u>RIPE Atlas Hackathon 2015 Discomo</u> <u>Team Visualises Netherlands Power</u> <u>Outage</u>

TWC, ASM-IX and Facebook Outages A

- The AMS-IX Outage as Seen with **RIPE** Atlas
- #facebookdown? What Internet Measurement Data Shows
- Time Warner Cable Outage

Natural Disasters: Haiyan, Sandy, Pam 👌

- <u>RIPE Atlas: Hurricane Sandy and</u> <u>How the Internet Routes Around</u> <u>Damage</u>
- <u>Typhoon Haiyan What we see in</u> <u>RIPEstat and RIPE Atlas</u>
- <u>Cyclone Pam and the Internet in</u> <u>Vanuatu</u>

46

DNS Related

RIPE Atlas Measurements

Maps Based on DNS Measurements 🏠

- DNS Root Instances
- **Comparative DNS Root RTT**
- **Root Server Performance**

Root Server Performance

48

DNSMON

- From anchors to ccTLDs
- An Updated DNS Monitoring Service

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

DomainMon

- Like "DNSMON", but
 - From probes
 - To second-level domains
- **RIPE Atlas: DomainMON is Here**

Monitor a new domain: ripe.net.

Servers @	Costs summary
pri.authdns.ripe.net. 193.0.9.5 2001:467cs00:5 sec1.apnk.net. 200.122:359 2001:3602:001ax4608:59 tinnie.arin.net. 199.212.0.53 2001:3002:0013x276435 snst-pb.tc.org. 192.54.11 2001:5602:0013x276435 enst-pb.tc.org. 192.54.11 2001:5602:0061:11:1 scal.apric.fre. 2001:4602:0061:101:004777:140	Daily cost: 28800 credits You will run out of credits in about 149 days
Probes 🔞	22,102015
10 🔅 probes from Worldwide 🔹 +	Total Expenses
Measurements 🕦	

Туре	Interval (seco	Include?			
UDP SOA	3600	٢	۵		
TCP SOA	3600		0		
ICMP Traceroute	3600		0		

Back Monitor

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

User Measurements Visualisations

51

- List of probes: sortable by RTT
- Map: colour-coded by RTT
- LatencyMON: compare multiple latency trends

=+ Bi					Streami	ing on 😐	- <u>₩</u> 4 Q Q) N
PE Atlas ping measurement #1402318 b	o nl-ams-as1101.anchors.i	dias.ripe.net				From 2015-0	9-16 07:51 to 2015-09-16 13:11
87% 97% 97% 97% 97% 10%		**************************************	000000000	900800008	0000883000	×*************************************	SE (6 probes) 4 4 Probe: 138, 395, 6037, 6048, 6063 6102 Tarpet ni-amo- as1107. anchors. atlas.r/ps. net
90% Latencyman 90% Ane Acc 90% 90% 90%	MA	<u>A</u> a	Å			Ŵ	DE (6 probes) Probles 57, 67, 433, 778, 812, 994 Target: ni-ana- as1101.anchors.atlas.rps.net
97% 97% 97% 97% 97% 97% 97% 97% 97% 97%	VMA.		n A	:: : :	A		GB (6 probes) Probos: 45, 432, 866, 887, 876, 888 Target: ri-ama- as1101.anchors.atlos.rips.net
97% 97% 97% 97% 97% 97%		MM	A.A.	WW		000000	NL (6 probes) # 4 Probe: 157, 194, 246, 232, 393, 1429 Target: ni-anta- as1101. anchors atlas.ripa.net
08 AM 08:30 0	9 AM 09:30	10 AM 10:30	11 AM	11:30 12 F	M 12:30	01 PM	
anoson anoson anoson anoson	aleano,	10001-1100	BIALION BIALZON	10100101	alsono)	DISQUED I	ansono,

⁴ DNS measurement to 195.253.65.6 (c.flexireg)

General Ir	nforn	nation	Probes	Мар	Latency	MON		DN	ISMON	Results	Ν	lodification Lo	g	=1	Fime Travel
Probe	¢	ASN (IP)	/4) 4	ASN (IPv6) \$	¢		¢	Time (U1	FC)	¢	Answer	¢	Response Time	¢
2458		49272		49272			۵		2017-04-	05 09:27		NOERROR		42.68	
15171		8473		8473			۵		2017-04-	05 09:26		NOERROR		30.317	
21733		44746		44746			۵		2017-04-	05 09:27		NOERROR		44.629	
24854		62094		62094			6		2017-04-	05 09:25		NOERROR		29.595	

Additional System and Global DNS Measurements

- Measuring random domains
- Measuring popular domains
 - New RIPE Atlas Root Zone DNS Measurements
- Instead of setting-up your own measurements, use the existing data!

DNS Measurements Analysis

53

- <u>DNS Censorship (DNS Lies) As Seen By RIPE Atlas</u> (Stéphane Bortzmeyer)
- Orange Blacklisting: A Case for Measuring Censorship (Stéphane Bortzmeyer, Oct 2016)
- Operator Level DNS Hijacking (Babak Farrokhi, Jul 2016)
- <u>Dissecting DNS Defenses During DDoS Attacks</u> (Giovane Moura, May 2018)

DNS Measurements Hackathon, April 2017

- <u>Results of the DNS Measurements Hackathon</u>
- DNS resolver hijack tester
 - Out of 6,700 probes, 113 were "suspicious" or "being weird",
- DNS Fingerprinting to identify hijacked resolvers
 - Top-5 countries were: VN, MG, IQ, ID and KR
- Data sets for researchers, Dec 2018

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

IXP Country Jedi

Does Internet Traffic Stay in a Country?

- Internet traffic paths (traceroutes) between RIPE Atlas probes in the same country to answer the following questions:
 - Do the paths take out-of-country detours?
 - Do we see Internet Exchange Points in the paths?
- Probe to probe
- User to user

IPv4 paths: Hungary, Bosnia, Finland 😥

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

57

Slovenia, Bosnia, Serbia

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020

Questions

BECHA@ripe.net emile.aben@ripe.net

Feedback

- What would you want to do with this data?
- What is missing?
- What could be easier?

Get Involved

63

- Use RIPE Atlas and RIS for your purposes: data analysis, network troubleshooting, investigative journalism
- Do scientific research and add your paper to the Wikipedia page
- Contribute to the code and community tools
- Add multi-lingual content / documentation on GitHub
- Sponsor a hackathon!
- Host a RIPE Atlas anchor or a (SW) probe
- Write a <u>RIPE Labs</u> article

With Great Power

Comes

Great Responsibility

Vesna Manojlovic and Emile Aben | 17 June 2020 | IMV 2020